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1 Proof of Hairer’s Reconstruction Theorem

1.1 Motivation for multiresolution analysis

We wish to show the following reconstruction theorem of Martin Hairer:

Theorem 1.1. If F' is a y-coherent germ, then there exists a distribution T such that
(T = Fo,oo)| S07, v #0.
This is uniform for 6 € (0,1], z € K, supp ¢ C B1(0), |¢lcr < 1.
Last time, we showed that T is unique if v > 0. However, if v < 0, then we can add a
distribution S to T, provided that
(S, 30| < 67,

which means S € C".

To give an idea about the strategy of the proof, we first discuss Hairer’s original proof
that uses wavelet expansion. In fact, the proof we presented for d = 1 uses the wavelet
W(0,1], 1.e. the Haar basis. Recall that if f € C%, g € C#, then
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And we have shown that this converges if o + > 1. For our extension, we replace 1,
with ¢ € D, and the Haar basis may be replaced with a basis using a multiresolution
analysis (MRA) of Mallat.



1.2 Multiresolution analysis

Here is a quick review of MRA:

Definition 1.1. We say ¢ € L?(R) is a scaling function or a (father) wavelet! if the
following conditions are true: First, let ¢7(x) = 2/2¢(2"(z — a)), where n € Z, a € 2~"Z
so that ||¢7||z2 = ||¢]| 2. Also set V,, = span{¢]! : a € A,, = 27"Z}.

(i) Vi € V41 (it suffices to have Vy C Vi)

(ii) {¢(- — k) : k € Z} is an orthonormal basis for V{ (hence {¢7 : a € A,} is an
orthonormal basis for V;,)

(iii) L*(R) =, Va-

Example 1.1. We can take, for example, ¢ = 1| to get functions of the form ¢y =
:ﬂ'[t?’ta—l]' AISO, % = {¢( — k?) ke Z}

Remark 1.1. It can be proved that there is no such ¢ which is smooth and has compact
support. However, if we only require that ¢ has a certain number of derivatives, it is
possible to construct one.

Remark 1.2. We may find W, such that V,,;1 = V,, ® W,, (W, is the orthogonal comple-
ment of V,, inside V;,41).

Proposition 1.1. There ezists 1 such that if " (x) = 2% (2"(z — a)), then
Wy, = span{¢)] : a € A, }.
This 1) is called the (mother) wavelet.

Remark 1.3. In fact, it suffices to find ¢y € V; so that ¢ is orthogonal to the integer
translates of ¢, and Wy = span{¢(- — k) : k € Z}. Indeed,

WiV <= ¢x) = \/52 ar¢(2x — r) for coefficients a,,
reZ

And v is simply given by

Y(@) = V2 bd(2r—7), b= (-1)"a1_.

r€Z
Example 1.2. When ¢ = 1o ], we may take to be 1 on [0,1/2] and -1 on [-1/2,0).

Here is the proof of ¥ 1L Vj:

I There are also mother wavelets.



Proof. Observe that

¢o(z) = ¢(z — 0
=> a,(V2¢(2z — 20 — 1))

= \/52 ar—20(2x — 7).

Hence,
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which implies that (¢, ¢p) =0

O

Theorem 1.2 (Ingrid Daubechies). For every k, there exists a scaling function ¢ € C* of

compact support. Moreover, any polynomial of degree k is in Vj.

1.3 Strategy of Hairer’s proof of the reconstruction theorem

Assuming this theorem of Daubechies, we are now ready to describe Hairer’s strategy for
the proof. Again, we wish to find a distribution T such that (T' — Fy, ©%) < 67. Here, is
the recipe for constructing 7: When v > 0, T' = lim,,_,oc 1}, (this means for every ¥ € D,

T () = limy o0 Tn(¢) = limy o0 [ Th(2)9 () dx), where

Tu(@) = 3 (Faysl)en ().
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How about v < 07 In this case, the convergence fails. Recall that if n > 0,
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Hence, L? = Vy & @52, Wy, or more generally,

L2=Vm@éwm.

So for any u,
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Our candidate for T is

T= Y (Fuofor+ > > (Fayl)r.

a€EN, n=m a€Am,

1.4 Proof of the reconstruction theorem without wavelet expansions

We now present a proof that does not use wavelet expansions. We achieve this by using a
suitable p € D. If we choose p correctly, then

T, = Fa(f),  where f(y) = 202" (@ — 9)) = 0% " (4).

For v > 0, the limit lim,, T}, will exist, but for v < 0, we will throw away a “bad term”
which will not matter. We will finish the explanation next time.
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