Math 279 Lecture 16 Notes

Daniel Raban

October 19, 2021

1 Proof of Hairer's Reconstruction Theorem

1.1 Motivation for multiresolution analysis

We wish to show the following reconstruction theorem of Martin Hairer:

Theorem 1.1. If F is a γ -coherent germ, then there exists a distribution T such that

$$|\langle T - F_x, \varphi_x^{\delta} \rangle| \lesssim \delta^{\gamma}, \qquad \gamma \neq 0.$$

This is uniform for $\delta \in (0,1]$, $x \in K$, supp $\varphi \subseteq B_1(0)$, $\|\varphi\|_{C^r} \leq 1$.

Last time, we showed that T is unique if $\gamma > 0$. However, if $\gamma < 0$, then we can add a distribution S to T, provided that

$$|\langle S, \varphi_x^\delta \rangle| \lesssim \delta^\gamma,$$

which means $S \in \mathcal{C}^{\gamma}$.

To give an idea about the strategy of the proof, we first discuss Hairer's original proof that uses wavelet expansion. In fact, the proof we presented for d = 1 uses the wavelet $\mathbb{W}_{[0,1]}$, i.e. the Haar basis. Recall that if $f \in \mathcal{C}^{\alpha}, g \in \mathcal{C}^{\beta}$, then

$$\int_{s}^{t} fg' d\theta = \underbrace{(fg')}_{T}(\mathbb{1}_{[s,t]})$$

$$\approx \sum_{\substack{t_{i}^{n} \in [s,t] \\ t_{i}^{n} \in [s,t]}} f(t_{i}^{n})(g(t_{i+1}^{n}) - g(t_{i}^{n}))$$

$$= \sum_{\substack{t_{i}^{n} \in [s,t] \\ t_{i}^{n} \in [s,t]}} f(t_{i}^{n})g'(\mathbb{1}_{[t_{i}^{n}, t_{i+1}^{n}]})$$

$$= \sum_{\substack{t_{i}^{n} \in [s,t] \\ t_{i}^{n} \in [s,t]}} F_{t_{i}^{n}}(\mathbb{1}_{[t_{i}^{n}, t_{i+1}^{n}]}).$$

And we have shown that this converges if $\alpha + \beta > 1$. For our extension, we replace $\mathbb{1}_{[s,t]}$ with $\varphi \in \mathcal{D}$, and the Haar basis may be replaced with a basis using a multiresolution analysis (MRA) of Mallat.

1.2 Multiresolution analysis

Here is a quick review of MRA:

Definition 1.1. We say $\phi \in L^2(\mathbb{R})$ is a scaling function or a (father) wavelet¹ if the following conditions are true: First, let $\phi_a^n(x) = 2^{n/2}\phi(2^n(x-a))$, where $n \in \mathbb{Z}$, $a \in 2^{-n}\mathbb{Z}$ so that $\|\phi_a^n\|_{L^2} = \|\phi\|_{L^2}$. Also set $V_n = \operatorname{span}\{\phi_a^n : a \in \Lambda_n = 2^{-n}\mathbb{Z}\}$.

- (i) $V_n \subseteq V_{n+1}$ (it suffices to have $V_0 \subseteq V_1$)
- (ii) $\{\phi(\cdot k) : k \in \mathbb{Z}\}$ is an orthonormal basis for V_0 (hence $\{\phi_a^n : a \in \Lambda_n\}$ is an orthonormal basis for V_n)
- (iii) $L^2(\mathbb{R}) = \overline{\bigcup_n V_n}.$

Example 1.1. We can take, for example, $\phi = \mathbb{1}_{[0,1]}$ to get functions of the form $\phi_a^n = \mathbb{1}_{[t_i^n, t_{i+1}^n]}$. Also, $V_0 = \{\phi(\cdot - k) : k \in \mathbb{Z}\}.$

Remark 1.1. It can be proved that there is no such ϕ which is smooth and has compact support. However, if we only require that ϕ has a certain number of derivatives, it is possible to construct one.

Remark 1.2. We may find W_n such that $V_{n+1} = V_n \oplus W_n$ (W_n is the orthogonal complement of V_n inside V_{n+1}).

Proposition 1.1. There exists ψ such that if $\psi_a^n(x) = 2^{n/2}\psi(2^n(x-a))$, then

$$W_n = \operatorname{span}\{\psi_a^n : a \in \Lambda_n\}.$$

This ψ is called the (mother) wavelet.

Remark 1.3. In fact, it suffices to find $\psi \in V_1$ so that ψ is orthogonal to the integer translates of ϕ , and $W_0 = \operatorname{span}\{\psi(\cdot - k) : k \in \mathbb{Z}\}$. Indeed,

$$V_0 \subseteq V_1 \iff \phi(x) = \sqrt{2} \sum_{r \in \mathbb{Z}} a_r \phi(2x - r)$$
 for coefficients a_r ,

And ψ is simply given by

$$\psi(x) = \sqrt{2} \sum_{r \in \mathbb{Z}} b_r \phi(2x - r), \qquad b_r = (-1)^r a_{1-r}.$$

Example 1.2. When $\phi = \mathbb{1}_{[0,1]}$, we may take to be 1 on [0, 1/2] and -1 on [-1/2, 0).

Here is the proof of $\psi \perp V_0$:

¹There are also mother wavelets.

Proof. Observe that

$$\phi_{\ell}(x) = \phi(x-\ell)$$

= $\sum_{r} a_r(\sqrt{2}\phi(2x-2\ell-r))$
= $\sqrt{2}\sum_{r} a_{r-2\ell}\phi(2x-r).$

Hence,

$$\begin{aligned} \langle \psi, \phi_{\ell} \rangle &= \sum_{r} a_{r-2\ell} b_r \\ &= \sum_{r} a_{r-2\ell} (-1)^r a_{1-r} \\ &= -\sum_{s} a_{1-s} (-1)^s a_{s-2\ell}, \end{aligned}$$

which implies that $\langle \psi, \phi_\ell \rangle = 0$.

Denote $1 - s = r - 2\ell$

Theorem 1.2 (Ingrid Daubechies). For every k, there exists a scaling function $\phi \in C^k$ of compact support. Moreover, any polynomial of degree k is in V_0 .

1.3 Strategy of Hairer's proof of the reconstruction theorem

Assuming this theorem of Daubechies, we are now ready to describe Hairer's strategy for the proof. Again, we wish to find a distribution T such that $\langle T - F_x, \varphi_x^{\delta} \rangle \leq \delta^{\gamma}$. Here, is the recipe for constructing T: When $\gamma > 0$, $T = \lim_{n \to \infty} T_n$ (this means for every $\psi \in \mathcal{D}$, $T(\psi) = \lim_{n \to \infty} T_n(\psi) = \lim_{n \to \infty} \int T_n(x)\psi(x) dx$), where

$$T_n(x) = \sum_{a \in \Lambda_n} \langle F_a, \phi_a^n \rangle \phi_a^n(x)$$

How about $\gamma < 0$? In this case, the convergence fails. Recall that if n > 0,

$$V_n = V_{n-1} \oplus W_{n-1} = V_{n-2} \oplus W_{n-1} \oplus W_{n-2} = \dots = V_0 \oplus W_0 \oplus W_1 \oplus \dots \oplus W_{n-1}.$$

Hence, $L^2 = \overline{V_0 \oplus \bigoplus_{n=0}^{\infty} W_n}$, or more generally,

$$L^2 = V_m \oplus \bigoplus_{n=m}^{\infty} W_m$$

So for any u,

$$u = \sum_{a \in \Lambda_m} \langle u, \phi_a^m \rangle \phi_a^m + \sum_{n=m}^{\infty} \sum_{a \in \Lambda_m} \langle u, \psi_a^n \rangle \psi_a^n.$$

Our candidate for T is

$$T = \sum_{a \in \Lambda_m} \langle F_a, \phi_a^m \rangle \phi_a^m + \sum_{n=m}^{\infty} \sum_{a \in \Lambda_m} \langle F_a, \psi_a^n \rangle \psi_a^n.$$

1.4 Proof of the reconstruction theorem without wavelet expansions

We now present a proof that does not use wavelet expansions. We achieve this by using a suitable $\rho \in \mathcal{D}$. If we choose ρ correctly, then

$$T_n = F_x(\widehat{\rho}_x^n), \quad \text{where } \widehat{\rho}_x^n(y) = 2^{dn} \rho(2^n(x-y)) = \rho_x^{2^{-n}}(y).$$

For $\gamma > 0$, the limit $\lim_n T_n$ will exist, but for $\gamma < 0$, we will throw away a "bad term" which will not matter. We will finish the explanation next time.